# Practical - beginner Aurelien Ginolhac 2<sup>nd</sup> June 2016

## Project - set-up

• Create a new project in a meaningful folder name on your computer such as R\_workshop/day1-beginner using the project manager utility, top-right of the rstudio window.

|   | 🖲 R_Workshop 🔹              |
|---|-----------------------------|
| œ | New Project                 |
| đ | Open Project                |
|   | Open Project in New Session |
|   | Close Project               |

Figure 1: project menu

• Create a new folder data using bottom-right panel > Files tab > New Folder button



Figure 2: Files tab

• Create a new script to write and execute your R commands. top-left panel > Create icon > New Script entry.

Now, you have the 4 panels of the rstudio layout.

• Save the script with a relevant name practical-beginner.R

## Reading data

 $Download\ this\ simple\ tab-separated\ file\ http://lsru.github.io/r\_workshop/data/women.tsv$ 

and save it inside the folder R\_workshop/day1-beginner/data.

Remember, your current active rstudio project should be day1-beginner

load it: All paths are relative to the root which is the projects folder

```
library("readr")
df <- read_tsv("data/women.tsv", col_names = TRUE)
df</pre>
```

| •        |                       |      |
|----------|-----------------------|------|
| <b>0</b> | • 🕣 • 🕞               |      |
| 2        | R Script              | Ω₩Ν  |
| •        | R Markdown            |      |
| R        | Shiny Web Ap          | p    |
|          | Text File             |      |
| cpp      | C++ File              |      |
| 6        | R Sweave              |      |
| 2        | R HTML                |      |
| Ŗ        | <b>R</b> Presentation | ı    |
|          | R Documentat          | tion |

Figure 3: create menu

| ## |    | height | weight |
|----|----|--------|--------|
| ## | 1  | 58     | 115    |
| ## | 2  | 59     | 117    |
| ## | 3  | 60     | 120    |
| ## | 4  | 61     | 123    |
| ## | 5  | 62     | 126    |
| ## | 6  | 63     | 129    |
| ## | 7  | 64     | 132    |
| ## | 8  | 65     | 135    |
| ## | 9  | 66     | 139    |
| ## | 10 | 67     | 142    |
| ## | 11 | 68     | 146    |
| ## | 12 | 69     | 150    |
| ## | 13 | 70     | 154    |
| ## | 14 | 71     | 159    |
| ## | 15 | 72     | 164    |

Thanks to readr the object df is already a *tibble diff* rstudio blog: tibble

# Manipulate a data frame

We keep this section short, as we will focus on dplyr to perform tasks on data frames

Access to one column, display only the first elements

head(df\$height)

#### ## [1] 58 59 60 61 62 63

Using a similar syntax, apply:

- the function mean() to find the mean of women' height.
- the function var() to find the variance of women' weight.

To compute her BMI (remember height are inches and weight US pounds) the formula is:

$$BMI = \frac{weight}{height^2} * 703$$

For the first individual (<sup>2</sup> for square):

(115 / 58^2) \* 703

## [1] 24.0324

- Compute the BMI for all individuals, save it as bmi
- Compute the mean and median of all BMI

## plotting

First load dplyr. This enables the use of the %>% pipe operator

library("dplyr")

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

Using df dataset:

- plot the heigh in function of the weight (geom\_point())
- use the previous scatterplot, but map the point' size to the bmi

## tidying and plotting

df has 2 columns, both contain values. - use gather() from tidyr to get two columns + measure for either height or weight + value for actual measurements Remember that gather takes by default all columns. - store the result into df\_melt

• plot the distribution as boxplots of both measures

### plot densities

### adding a column to a data frame

```
Let's add bmi as a third column to df.
df$bmi <- bmi
head(df)
```

```
## Source: local data frame [6 x 3]
##
## height weight bmi
## (int) (int) (dbl)
```

| ## | 1 | 58 | 115 | 24.03240 |
|----|---|----|-----|----------|
| ## | 2 | 59 | 117 | 23.62856 |
| ## | 3 | 60 | 120 | 23.43333 |
| ## | 4 | 61 | 123 | 23.23811 |
| ## | 5 | 62 | 126 | 23.04318 |
| ## | 6 | 63 | 129 | 22.84883 |

### plot densities

• Gather (from tidyr) the 3 columns and plot all densities using different colours and set them translucent You will need to make a new df\_melt data frame first.

The 3 distributions have very different ranges.

• Plot the same data but faceting it by measure (Use the appropriate free scale).

When faceting, the 3 distributions are drawn in distinct plots: mapping the colours to measure is useless.

• redo the plot using a lightblue colour for all. Be careful to NOT set the colour inside aes().

## Supplementary exercices

### reading more complex file

Microarray data from the GEO dataset GSE35982.

- download this compressed file: GSE35982.tsv.gz in your data folder.
- read it using read\_tsv() and store it into a data frame named gse. The file will be uncompressed seamlessly.
- Is the file tidy?
- Gather the samples. Look at the gather help page to select columns based on characters.
- plot the distributions as boxplots
- Any obvious issues? Check the file and find out what happened.

Hi

the locale setting in readr allows to specify the decimal mark used for float numbers

- Correct the mistake by reading again the file with the adjusted relevant option and store the data into a a new object.
- Replace the wrong column in gse by the correct one found in the data frame you just created.
- tidy the samples again.
- plot the distributions as boxplots
- do the data appear normalised?